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The non-linear, moderately large amplitude #exural free vibrations of an arm clamped
with a setting angle to a rigid rotating hub are studied. The shear deformation and rotary
inertia e!ects are assumed to be negligible, but account is taken of axial inertia, non-linear
curvature and the inextensibility condition. The Lagrangian approach in conjunction with
the assumed modes method, assuming constant hub rotation speed, is used in a consistent
manner to obtain the third order non-linear uni-modal temporal problem. Because of the
strength of the non-linearities in the temporal problem, which includes elastic and inertial
geometric sti!ening as well as inertial softening terms, a time transformation method is
employed to obtain an approximate solution to the frequency}amplitude relation of arm
free oscillation. Results in non-dimensional form are presented graphically, for the e!ect of
hub rotation speed, blade setting angle, and hub radius on the variation of the natural
frequency with vibration amplitude.

( 2001 Academic Press
1. INTRODUCTION

Flexural vibrations of rotating #exible beam elements are a major concern in many
practical engineering applications such as turbine blades, helicopter rotors, satellite
antennas and robotic arms. These vibrations have been the subject of numerous analytical
and numerical investigations using a variety of mathematical models with various
assumptions concerning the e!ects of beam geometric non-linearities; references [1}15] are
examples of such studies. These studies, and others related, have shown that the axial
displacement due to bending has a major e!ect on the stability and control of #exible
rotating beam structures. It was shown that increasing the rotation speed tends signi"cantly
to sti!en the beam and thus increases its #exural natural frequencies. The e!ect of axial
shortening due to bending in rotating #exible beams has been addressed in di!erent ways in
various available dynamic models leading to signi"cantly di!erent results depending on the
way this e!ect of axial displacement is accounted for, in the formulation of the mathematical
model [5]. In most cases, the available models accounted for the e!ect of axial shortening
only partially, usually using the method of virtual work, in the formulation of either the
sti!ness or inertia forces. In order to obtain stable beam motions at high angular velocities,
some models included the shortening e!ect in the formulation of both the inertia and elastic
forces, but only partially, wherein some of the non-linear terms which may arise as a result
of axial shortening were ignored.

In the present work, non-linear free vibrations of a rotating beam are studied by using
a consistent formulated dynamic model which adopts the inextensibility condition to
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840 M. N. HAMDAN AND B. O. AL-BEDOOR
account for the axial shortening due to bending in the formulation of both the kinetic and
potential energy. The shear deformation and rotary inertia e!ects are assumed to be
negligible, but axial inertia and non-linear curvature are taken into account. The beam is
assumed to be undergoing moderately large-amplitude planar #exural vibrations, and the
hub rotation is assumed to constant. An assumed single mode Lagrangian approach is used
to formulate directly an equivalent third order non-linear temporal problem which includes
elastic and inertial geometric sti!ening as well as inertial softening non-linear terms. For the
range of amplitudes to be considered in this work, e.g., for amplitudes of tip vibration up to
0)5 of beam length for the "rst mode, the equivalent temporal equation of motion presents
a strongly non-linear oscillator. Therefore, the time transformation method [16}18] which
is suitable for such oscillators is used to obtain an approximate expression for the
amplitude}frequency relation. A parametric study is carried out to show the e!ects of
rotational speed, hub radius, hub mass and setting angle on the frequency}amplitude
variation for each of the "rst three modes. The results are presented graphically in
non-dimensional forms and their trends are compared with those available in the literature.

2. ASSUMPTIONS AND EQUATION OF MOTION

2.1. SYSTEM DESCRIPTION AND ASSUMPTIONS

The beam system under consideration is shown schematically in Figure 1, X, >, Z
denotes the set of rectangular Cartesian co-ordinate axes "xed in space with origin O at the
center of the rotating hub. The x, y, z is the system of orthogonal axes rotating with the hub
with origin o at the root of the beam (i.e., on the hub surface) and with the x-axis oriented
along the neutral axis of the beam in the undeformed con"guration, while the x@, y@, z@ are
the principal rotating axes of the undeformed beam with common origin o with the xyz and
with the y@z@ plane inclinded to the yz plane at the angle t called the setting angle. The hub
has a radius R

H
and angular velocity h0 about the Z-axis. The beam is assumed to be

homogeneous, initially straight along the x@-axis, cantilevered at the base, having a uniform
cross-sectional area A, #exural sti!ness EI in the x@y@ plane, constant length l, and mass
o per unit volume. The beam thickness is assumed to be small compared with beam length
so that the e!ects of rotary inertia and shear deformation can be ignored. The beam motion
is assumed to be con"ned to the x@y@ plane (i.e. only planar #exural vibrations are possible),
Figure 1. Disk}blade schematic diagram.
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where this motion is purely in the xy plane (lead}lag) when W"03 and it is purely in the xz
plane (#apping) when t"903. Furthermore, it is assumed that the peak amplitude of this
planar #exural motion may reach arbitrary, moderately large values (i.e., can be of the order
of the beam length for the lower modes) but the slope of the elastica may not have a slope
tangent to the neutral x@-axis, i.e., / may not reach $903; also the beam is assumed to be
conservative. In the following section the governing temporal equation describing this
motion is formulated using a combined Lagrangian-assumed mode method wherein the
e!ect of axial displacement due to bending determined using the inextensibility condition
[19] and its time derivative to eliminate the dependence of the beam Lagrangian on the
axial displacement.

2.2. EQUATION OF MOTION

In the co-ordinate systems shown in Figures 1 and 2, the components of the inertial
displacement vector R

P
of the beam cross-sectional area centroid P at an arbitrary point

s along the length of the beam after deformation are, at time t, given by

G
R

PX
R

PY
R

PZ
H"R

H G
cos h

sin h

0 H#[Ah][At] G
s#u

v

0 H , (1)

where R
H

is the hub radius, h is the angular position of the x@-axis in the inertial frame, t is
the setting angle, [At] is the rotation transformation matrix from the x@y@z@ rotating
co-ordinate system to the xyz rotating co-ordinate system and is given by

[At]"
1 0 0

0 cost !sint

0 sint cost

, (2)

[Ah] is the transformation matrix from the xyz rotating co-ordinate system to the "xed
X>Z inertial co-ordinate system de"ned by

[Ah]"
cos h !sin h 0

sin h cos h 0

0 0 1

, (3)

u"u (s, t) is the axial displacement (shortening, i.e. u)0) of the deformed beam at the point
P along the rotating x@-axis, and v"v(s, t) is the lateral displacement of the point P along
the rotating y@-axis.

By di!erentiating equation (1), one obtains the absolute velocity R0
P

of the point P as

G
RQ

PX
RQ

PY
RQ

PZ
H"hQ R

H G
!sin h

cos h

0 H#hQ C
dAh
dh D[At] G

s#u

l

0 H#[Ah][At] G
uR
vR
0 H . (4)

Substituting equations (2) and (3) into equation (4) and carrying out the matrix
multiplication in the resulting equation leads to the following expression for the inertial
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velocity vector R0
P
:

R0
P
"[uR cos h!R

H
hQ sin h!vhQ cos h cost!vR sin h cost!(s#u)hQ sin h]I

#[R
H
hQ cos h#uR sin h!vhQ sin h cos t#vR cos h cost#(s#u)hQ cos h]J

#[vR sint]K, (5)

where I, J and K are respectively unit vectors along the X,> and Z inertial axes. The kinetic
energy KE of the homogenous uniform beam}hub system is given by

KE"

oA

2 P
l

0

R0
P
)R0

p
ds#

1

2
I
H
hQ 2, (6)

where I
H
"1

2
m

H
R2

H
is the mass moment of inertia of the hub about the inertial Z-axis, and

m
H

is the mass of hub. Upon substituting equation (5) into equation (6), and noting that the
angular speed hQ is independent of the spatial variable s, the above beam}hub system kinetic
energy expression simpli"es to

KE"

m
b

2j2 CC2A1#
1

2
kBDhQ 2#

m
b

2 P
1

0
CvR 2#uR 2#(s#u)2hQ 2#2(s#u)vR hQ cos t#2R

H
vR hQ cos

t

#2R
H
(s#u)hQ 2!uR vhQ cost#v2hQ 2 cos2tDdf, (7)

where j"1/l, m
b
is the beam total mass, C"R

H
/l and k"m

H
/m

b
are dimensionless hub

radius and hub mass ratios, and f"s/l is a dimensionless beam arc length variable. Note
that the kinetic energy expression KE in equation (7) is a function of the beam displacement
and velocity variables u, uR , v and v5 as well as of the hub angular speed hQ . The axial
displacement u and axial velocity uR can be eliminated from this equation by noting that for
the present inextensible planar beam motion, the inextensibility condition dictates that [19]

(1#ju@)2#(jv@)2"1, (8)

which may be rewritten as

1#ju@"[1!(jv@)2]1@2, (9)

where a prime denotes a derivative with respect to the dimensionless arc length variable f.
Then, noting that (jv@)2(1, expanding the right-hand side of equation (9) into a power
series, retaining non-linear terms up to the desired (i.e., fourth) order, and integrating the
result from 0 to an arbitrary value of f leads to the following expression of the axial
displacement (shortening) u due to the #exural bending v,

u"
!1

2 P
f

0
Ajv@2#

1

4
j3v@4Bds, (10)

which, upon di!erentiating with respect to time, yields

uR "
!1

2 CP
f

0
Ajv@2#j3v@4BdsD

0
. (11)
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Substituting equations (10) and (11) into equation (7), integrating terms which do not
include the spatial-dependent variable v or its derivatives, one obtains the beam}hub
kinetic energy KE as

KE"

m
b

2j2
C

o
hQ 2#

m
b

2 P
1

0
G
1

4 A P
f

0

jv@2dsB
2
hQ 2!

f
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0
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1

4
j3v@4BdshQ 2

!R
H P

f

0
Ajv@2#

1
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1

4 CAP
f

0

jv@2dsBD
2
#vR 2#v2hQ 2 cos2 t
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H
vR hQ cost#2fvR hQ cost!P

f

0

jv@2dsvR hQ cost#A P
f

0

jv@2dsBvhQ costHdf, (12)

where

C
0
"C2(1#1

2
k)#1

3
#C, (13)

with C and k the dimensionless parameters de"ned from equation (7).
Next, to formulate the system Lagrangian, the potential energy PE of the beam is

obtained. For the present beam system, the potential energy PE due to the assumed
inextensional planar bending motion is given by

PE"

EI

2j P
1

0

K2 (f, t) df, (14)

where EI is the principal #exural sti!ness about the z@-axis, and K~1 (f, t) is the radius of
curvature at a position f. Following reference [20], it can be seen from Figure 2 that

K (f, t)"j/@ (f, t), (15)

where
sin/"jv@, (16)

/"/ (f, t) is the slope of the elastica at a position f, and a prime, as before, denotes
a derivative with respect to the dimensionless arc variable f.

Di!erentiating equation (16) with response to f, and noting that cos/"J(1!sin2/)
lead to

/@"jvA[1!(jv@)2]~1@2. (17)

Substituting equation (17) into equation (15), noting that (jv@)2(1, expanding the
bracketed term on the right-hand side of this equation into power series, retaining terms up
to fourth order and substituting the results into equation (14), one obtains the bending
potential energy PE of the beam as

PE"(EIj3/2) P
1

0

[vA2#(jv@vA)2] df, (18)

which is not a function of the axial displacement variable u nor any of its derivatives. It is to
be noted that the same potential expression PE as given in equation (18) was also obtained



Figure 2. De#ected con"guration of the blade.
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by using, instead of equation (16), the kinematic relation tan/"jv@/(1#ju@), de"ned in
reference [20], along with the inextensibility condition in equation (9) to calculate the
curvature K in equation (15). Substituting the calculated K into equation (14) and retaining
non-linear terms up to fourth order was found to lead to the same potential energy
expression PE as given in equation (18). This indicates that, except for the restriction of
constant beam length, the #exural potential energy of the planar inextensible beam is not
a!ected by the inextensibility constraint.

The beam}hub system Lagrangian ¸ is de"ned as

¸"KE!PE, (19)

where KE and PE are given by equations (13) and (18) respectively. The continuous system
in equation (19), like most other non-linear continuous systems, does not admit a closed
form solution. However, the interest in this work is in the case where the beam motion is
dominated by a single active mode (i.e., the modal subspaces are invariant [21] and are
assumed to be individually active); therefore, an assumed single-mode approach may be
used to discretize this continuous Lagrangian. Accordingly, one assumes

v(f, t)"U
i
(f )g (t), (20)

where U
i
(f ) is a normalized, self-similar (i.e., independent of motion amplitude) assumed

mode shape de#ection of the beam and g (t) is an unknown time modulation of the assumed
de#ection mode U

i
(f). In the present work, the beam de#ection shape U

i
(f) is assumed to be

that of the associated non-rotating linear cantilever beam which can be written in the form

U
i
(f)"A

1

r
i
B [coshp

i
f!cos p

i
f!c

i
(sinh p

i
f!sin p

i
f)], (21)

where r
i
"DU

i
(f) D

.!9
is a scaling factor, p

i
"m

b
u

ni
l3/(EI) (u

ni
is the ith mode natural

frequency of the non-rotating linear cantilever beam) is the ith dimensionless frequency
parameter found from the solution of the transcendental frequency equation

cos p
i
cosh p

i
#1"0 (22)
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and c
i
is a weighting constant associated with each mode, de"ned as

c
i
"

sinh p
i
!sin p

i
coshp

i
#cos p

i

. (23)

Upon substituting equations (13), (18) and (20) into equation (19), the following expression
for system Lagrangian is obtained:

¸"

m
b
l2

2
[C

o
hQ 2#bi

2
q2hQ 2#bi

3
q4hQ 2#bi

4
qR hQ #bi

5
q2qR hQ #bi

1
qR 2#bi

6
qR 2q2

!b2bi
7
q2!b2bi

8
q4], (24)

where b"(EI/m
b
l3)1@2 is a frequency parameter, q"g/l is the dimensionless displacement

of the beam at the point of maximum de#ection, and bi
j
, j"1,2, 8, are dimensionless

coe$cients associated with each of the assumed ith mode, de"ned as follows:
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1
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i
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2
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0
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i
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f

0
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(s) dsD df,
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3
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f

0
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2
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f
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5
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1

0
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f

0
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0
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f

0
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2
df,
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7
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1

0

UA2
i

(f)df, bi
8
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1

0

U@2
i

(f)UA2
i

(f) df. (25)

Upon assuming the hub rotation speed hQ to be a constant, and applying the
Euler}Lagrange equation

d

dt A
L¸
LqR B!

L¸
Lq

"0, (26)

the following non-linear non-dimensional uni-modal equation of motion is obtained:

wK#w!e
1
X2w!e

2
X2w3#e

3
(w2wK#wwR 2)#e

4
w3"0. (27)

Here a dot now denotes a derivative with respect to the non-dimensional time,
t*"(b2bi

7
/bi

1
)1@2t, w"p

i
q"p

i
g/l is a dimensionless tip displacement, X"hQ /u

ni
is

a dimensionless hub speed ratio, u
ni

is, as de"ned before, the ith mode natural frequency of
the associated non-rotating linear beam, and

e
1
"bi

2
X2/bi

1
, e

2
"2bi

3
X2/(bi

1
p2
i
), e

3
"bi

6
/(bi

1
p2
i
), e

4
"2bi

8
/ (bi

7
p2
i
) (28)

are dimensionless coe$cients.
Equation (27) describes the non-linear, planar, #exural free motion of the inextensible

beam which is rotating at a constant speed around its hub center. In this equation, the terms
e
3
w2wK and e

3
wwR 2 are inertial non-linearities due to kinetic energy of axial motion which
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arise as a result of using the inextensibility condition. The "rst of these non-linear terms has
a softening e!ect (i.e., leads to a decreasing frequency with increasing amplitude), while the
second has a hardening e!ect (i.e., leads to a increasing frequency with increasing
amplitude). The non-linear term e

4
w3 in equation (27) is a hardening static type due to

potential energy stored in bending and arises as a result of using non-linear curvature, while
the non-linear centrifugal term e

2
X2w3 is an inertial hardening (i.e., numerical results,

samples of which are shown later, indicate that e
2
(0 for all modes and selected system

parameters) which arises as a result of using the inextensibility condition and always has
a stabilizing e!ect (i.e., since e

2
(0 leads to an increasing non-linear natural frequency with

increasing hub rotation speed X). On the other hand, the linear centrifugal term e
1
X2w,

which when using linear beam theory always has a destabilizing e!ect for any mode, is
found (as will be shown later), as a result of using the inextensibility, to be always
a stabilizing factor (i.e., e

1
(0) for the second and higher modes, and above some critical

value of beam parameters it also becomes a stabilizing factor for the "rst mode. An
approximate analytic solution of the non-linear equation (27) is presented in the next
section.

3. METHOD OF SOLUTION

The calculations of the coe$cients and examination of the various terms in equation (27)
indicate that the non-linear oscillator described by this equation is in general strongly
non-linear. Samples of the results of these calculations are shown in Table 1. These sample
results and others not shown indicate that for the range of motion amplitudes to be
considered in the present work (i.e., for values of vibration amplitude g"lq"lw/p

i
up to

0)5l for the "rst mode), the non-linear terms in equation (27) are not small compared to the
linear ones. Therefore, a "rst-order approximation to the frequency}amplitude relation of
this oscillator, which includes static and inertia non-linearities, obtained by using
perturbation methods or a single-mode harmonic balance method is not expected to yield
fairly accurate results when the vibration amplitude is not relatively small compared to
unity. Instead, the time transformation method, described in detail in references [16}18],
which is not restricted to weakly non-linear oscillators is used to obtain an approximation
to the frequency}amplitude relation of the strongly non-linear conservative oscillator in
equation (27). According to this method, a single-valued transformation ¹(t*) (recall that
the derivatives in equation (27) are with respect to the dimensionless time t*), is sought
between the time t* and a new time ¹, such that in the new time domain ¹ the solution of
equation (27) is simple harmonic with period equal to 2n : i.e., one assumes w (¹)"A cos¹,
where A is the amplitude of motion and ¹(0)"0. Transforming equation (27) to the
new time domain ¹, de"ning F"d¹/dt* and substituting for w(¹)"A cos¹ in the result,
TABLE 1

Samples of calculated values of parameters in temporal equation (27)

Mode C t (deg) X X2e
1

X2e
2

e
3

e
4

1 2 30 1 !0)131133 !3)202327 0)029306 0)930404
1 1 0 1 0)521665 !1)477399 0)029306 0)930404
2 1 15 0)7 !12)24061 !6)274303 2)410494 154231
3 0)4 0 0)5 !33)25740 !3)732080 12)46556 1)125653



ROTATING INEXTENSIBLE NON-LINEAR BEAM 847
leads to

(1!e
1
X2!F2 ) cos¹!e

3
A2FF @!e

2
X2A2 cos3¹#e

3
A2 cos2¹(!FF @ sin¹!F2 cos¹)

#e
3
A2F2 cos¹ sin2¹#e

4
A2 cos3¹"0, (29)

where a prime denotes a derivative with respect to time ¹. Next, one solves equation (29) for
F2 by noting that, for the present oscillator which does not involve even non-linearities,
a series solution of period 2n may be assumed in the form [16]

F2"
=
+

n/0,2

G
n
cos n¹. (30)

Substituting equation (30) into equation (29), using appropriate trigonometric identities to
simplify some of the trigonometric terms, ignoring harmonics greater than the third, and
equating to zero the coe$cient of each harmonic in the resulting equation, one obtains the
following set of two independent, simultaneous linear algebraic equations for the
coe$cients G

0
and G

2
:

a
11

G
0
#a

12
G

2
"b

1
, a

21
G

0
#a

22
G

2
"b

2
. (31, 32)

Here

a
11
"1#1

2
e
3
A2, a

12
"1

4
e
3
A2, a

21
"1

2
e
3
A2, a

22
"1#3

8
e
3
A2,

b
1
"1!e

1
X2!3

4
e
2
X2A2#3

4
e
4
A2, b

2
"1

4
A2(e

2
X2!e

4
). (33)

Solving equations (31) and (32) for G
0

and G
2
, substituting the result into equation (30),

using the relation F"d¹/dt*, integrating the resulting equation from 0 to 2n in ¹ and
noting that the period in the time ¹ domain is 2n leads to the non-linear
frequency}amplitude relation in the dimensionless t*:

u"G1@2
0 C1#

3

16
H2#

105

1024
H4#2D

~1
. (34)

Here

H"

G
0

G
2

, G
0
"

b
1
a
22
!b

2
a
12

D
, G

0
"D"a

11
a
12
!a

12
a
21

, G
2
"

b
2
a
11
!b

1
a
21

D
.

(35)

Note that t*"(b2bi
7
/bi

1
)1@2 t"u

ni
t, where u

ni
is the ith mode natural frequency (in time t)

of the associated non-rotating linear beam; thus the dimensionless non-linear frequency
parameter u calculated from equation (34) is the ratio of the frequency in time t of the
non-linear rotating beam to the natural frequency u

ni
of the associated non-rotating linear

beam. Also note that the leading term in equation (34) is the result one obtains by using the
single-mode harmonic, i.e., this term represents the e!ect of the fundamental harmonic of
the system non-linearities, while the bracketed term in this equation represents a measure of
the relative importance of the higher harmonics introduced by the system non-linearities.
Furthermore, in arriving at equation (34), a truncated power series expansion in terms of
the parameter H, assuming DH D(1, was used. Thus, equation (33) is expected to yield
reasonably accurate results for the range of amplitude A for which DH D(1 which is found to
be the satis"ed in the amplitude range considered in the present work. Examples of the
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results obtained by using equation (34) for selected values of the rotating beam system
parameters are presented and discussed in the next section.

4. RESULTS AND DISCUSSION

By using equations (25), (28), (33) and (35), the non-linear free vibration frequency
parameter u of each of the "rst three modes of free vibration of the rotating beam shown in
Figure 1 was calculated, for selected values of the hub radius ratio C, speed ratio X, setting
angle t and range of motion amplitude A, by using equation (34). All of the calculations
were programmed on a digital computer and a symbolic manipulator and the
Gauss-quadrature 16-point integration scheme were used to evaluate the system coe$cients
de"ned in equation (28). Examples of the results of these calculations are shown in
Figures 3}6 in which the variation of the non-linear frequency parameter u (u is the ratio of
Figure 3. (a) E!ect of hub radius C on the variation of the frequency parameter u with amplitude q for the "rst
mode; t"103 and X"1; **, C"0)2; h, C"0)5; e, C"0)8; x, C"1)0; s, C"2)0. (b) As (a) but for the
second mode. (c) As (a) but for the third mode.



Figure 4. (a) E!ect of the setting angle t on the variation of the frequency parameter u with amplitude q for the
"rst mode; C"1; X"1;**, t"03; h, t"153; e, t"303; x, t"453; s, t"753. (b) As (a) but for the second
mode. (c) As (a) but the third mode.
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the ith mode non-linear natural frequency of the rotating beam to the ith mode natural
frequency u

ni
of the associated linear non-rotating beam) is displayed, with the

dimensionless beam displacement amplitude q"g/l"A/p
i
at the point of maximum beam

de#ection for di!erent modes and various selected values of C, t and X.
The results in these "gures, and others not shown, indicate that: (1) the u}q curves of the

non-linear inextensible rotating beam are, for given C, t and X, of the hardening type (i.e.,
the frequency u increases with increasing motion amplitude q) for the "rst mode and are of
the softening type for the second and higher modes (i.e., for given C, W and X, u decreases
with increasing q); (2) at a given amplitude q, and for all modes, the e!ect of increasing any of
the parameters C, t or X leads to increasing u, where this e!ect becomes signi"cantly larger
as the mode number is increased; (3) at a given amplitude q, and for all modes, the change in
u is more signi"cant when X is changed and less signi"cant when t is changed.
Furthermore, note that the "rst-mode results shown in Figure 5(a) are for a case for which



Figure 5. (a) E!ect of the speed ratio X on the variation of the frequency parameter u with amplitude q for the
"rst mode; t"453; and C"1; **, X"0)5; h, X"0)8; e, X"1; x, X"2; s, X"5. (b) As (a) but for the
second mode. (c) As (a) but for the third mode.
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e
1
"!0)11285(0, and those in Figure 6(a) are for a case for which e

1
"0)38746'0.

From the results in these two "gures, and other similar ones not shown, one can see that
when e

1
corresponding to the "rst mode is positive the non-linear free vibration at this

mode becomes unstable (i.e., no real solution for u is found) at low vibration amplitude
when the hub rotation parameter X is increased above a certain critical value, where the
width of this instability region increases as X is increased further above the critical value.
Furthermore, these results show that when e

1
'0, increasing the hub rotation speed

parameter X tends, with vibration amplitude q kept constant, to decrease the "rst-mode
frequency parameter u (i.e., tends to destabilize the beam free vibration) in the low vibration
amplitude region, while in the high vibration amplitude region, increasing X tends to
increase u, i.e., tends to sti!en the beam. On the other hand, as can be seen from Figure 5(a),
the instability region of the "rst-mode free vibration at low vibration amplitude, indicated
above, is absent when e

1
corresponding to this mode is negative. Note that, as was indicated



Figure 6. (a), (b), (c) as Figure 5(a), (b), (c) but for W"03.
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at the end of section 2, e
1

is always negative for the second and higher modes; thus this
behavior of the "rst-mode free vibration is not shared with those of the second and higher
modes. Also, using the de"nitions given in equations (21), (25) and (28) and noting that b1

1
is

always positive, one "nds that the condition e
1
(0 for the "rst mode leads to

cos2W!0)34413!0)26841C(0 which is satis"ed for all values of C, (C'0) when
W'543. Thus, according to this result, the above indicated destabilization e!ect of the high
rotation speed X, which may occur for the "rst mode only in the low vibration amplitude
region, is totally removed provided that the setting angle W'543.

5. CONCLUSIONS

The dynamic characteristics of a rotating inextensible blade attached with a setting angle
to a rigid hub, rotating at constant speed, are studied analytically using a consistent
formulated model which takes into account the beam axial inertia and non-linear curvature.
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The model utilized the multibody dynamic approach though using two di!erent
co-ordinate transformations. One transformation is from the blade principal co-ordinate
system to the disk body co-ordinate system using the blade setting angle as the
transformation angle. The second transformation is from the disk co-ordinate system to the
inertial reference frame using the rigid body rotation degree-of-freedom as the
transformation angle. This approach resulted in a geometrically valid model for any
possible setting angle. The e!ect of axial displacement (shortening e!ect) due to bending is
accounted for in the description of the de#ected material point position vector. By using the
inextensibility condition, the e!ect of axial displacement and its associated axial inertia due
to bending were incorporated into the system Lagrangian consistently, which leads to
non-linear e!ects that in general are not accounted for in other available dynamic models.
The results of numerical simulation demonstrated that the developed model solution
remains stable (i.e., does not break down) at high values of angular velocity of the rotating
beam. These results indicated that the rotating beam non-linear free vibration frequency
exhibits a hardening behavior for the "rst mode and softening behavior for the second and
higher modes. They also indicated that increasing the rotation speed, hub radius or setting
angle leads to a signi"cant increase in the natural frequency corresponding to any of the
modes. It has also been found that, for some values of system parameters, the rotating beam
free vibration exhibits interesting behavior, especially at the "rst vibration mode which
requires further investigation.
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